Stem Sentences

Fractions

Part-Whole relationships				
Example of stem sentence	Type of stem sentence			
If \qquad is the whole then \qquad is part of the whole.	Structure	If Europe is the whole, then the United Kingdom is part of the whole.		
A part is always smaller than the whole.	Generalisation			
If \qquad is the whole then \qquad is not part of the whole.	Structure	If my face is the whole then my foo whole.		rt of the
The whole has been divided into \qquad equal / unequal parts.	Structure / language			
The whole has been divided into \qquad equal parts.	Structure	parts.		The whole has been divided into 4 equal

	The parts are equal, I know this because the number of in each part is the same.	Structure	
	The parts are unequal, I know this because the number of \quad in each part is not the same.	Structure $/$ language	

Stem Sentences

Fractions

	The denominator is__ because the whole is divided into_e_ equal parts. The numerator is one because one part is shaded.	Structure
		The denominaor is 4 because the whole is divided into 4 equal parts. The numerator is I because one part is shaded.

Stem Sentences

Fractions

The whole has been divided into \qquad equal parts. Each part is one \qquad of the whole. \qquad of the whole ribbon has been cut off.	Structure	
The whole has been divided into \qquad equal parts. One of these parts is highlighted. This part is one \qquad of the whole line.	Structure	The whole has been divided into 5 equal parts. One of these parts is highlighted. This part is one fifth of the whole line.
The whole has been divided into \qquad equal parts. One of these parts in one \qquad of the whole.	Structure	Dividing 12 counters into equal groups:
When the whole is the same, the greater the number of equal parts, the smaller each equal part is. When the whole is the same, the smaller the number of equal parts, the bigger each equal part is.	Generalisation	
When comparing unit fractions, the greater the denominator, the smaller the fraction.	Generalisation	Ordering the fractions:

	When we compare fractions, the whole has to be the same.	Generalisation	Emma looks at these two diagrams. Shesays that they prove that $\frac{1}{4}>\frac{1}{2}$. Do you agree or disagree?'

Stem Sentences

Fractions

	The denominator is because the whole has been divided into equal parts. The numerator is because of the parts have been identified.		
language		\quad	Making a whole denominator is 5 because the whole has been divided
:---			
into 5 equal parts.			
The numerator is 3 because 3 of the parts have been			
identified.			

Stem Sentences

Fractions

Stem Sentences

Fractions

Each whole is divided into four equal parts. We have \qquad of these equal parts. \|This represents \qquad quarter(s)	Structure/ language	Each whole is divided into four equal parts. We have II of these equal parts. This represents II quarter(s)
The denominator is \qquad This means that each whole has been split into \qquad equal parts. _ parts make each whole. The numerator is \qquad This means there are \qquad equal parts. It is possible to make \qquad full groups of \qquad quarters and there are \qquad more quarters.	Structure/ language	The denominator is 4 . This means that each whole has been split into 4 equal parts. 4 parts make each whole. The numerator is 10 . This means there are 10 equal parts. It is possible to make 2 full groups of 4 quarters and there are 2 more quarters
Our unit is \qquad so we will be thinking about groups of There are \qquad in one whole.	Structure / language	- 'Our unit is eighths so we will be thinking about groups of eight.' - There are $\frac{8}{8}$ in one whole.'
How many groups of -in - \qquad groups and \qquad more \qquad	Structure / language	Improper fraction Prompt question Mixed number $\frac{21}{10}$ How many groups of $\frac{10}{10}$ in $\frac{21}{10} ?$ (2 groups and 1 more tenth.) $2 \frac{1}{10}$
There are \qquad groups of \qquad sixths which is \qquad sixths and \qquad more sixths, so that is \qquad sixths	Structure / language	$3 \frac{1}{6}=\frac{\square}{6} \quad$ There are threegroups of $\frac{6}{6}$ which is $\frac{18}{6}$, and one more sixth; that's $\frac{19}{6}$

Stem Sentences

Fractions

The numerator has been scaled up/down by \qquad The denominator has been scaled up/down by \qquad These fractions are /are not equivalent.	Language / structure	The numerator has been scaled up by 4 The denominator has been scaled up by 4 These fractions are equivalent.
is equivalent to	Language / structure	.$\frac{2}{5}$ is equivalent to $\frac{4}{10}$.
is equal \square because both the numerator and denominator have been scaled by a factor of	Language / structure	$\frac{3}{8}$ is equal $\frac{12}{32}$ because both the numerator and denominator have been scaled by a factor offour'.
When the numerator and denominator are multiplied or divided by the same number, the value of the fractions remains the same.	Generalisation	
Simplifying Fractions		
The highest common factor is _so divide the numerator and denominator by \qquad	Language / structure	The highest common factor is 4 so divide the numerator and denominator by 4
A fraction can be simplified when the numerator and denominator have a common factor other than one.	Generalisation	
To write a fraction in its simplest form, divide both the numerator and denominator by their highest common factor.	Generalisation	Highest common factor $=3$

Stem Sentences

Fractions

is not in its simplest form because \qquad is a common factor of \qquad and \qquad is in its simplest form because one is the only common factor of \qquad and \qquad	Language / structure.	'Sort the following numbers according to whether they are expressed in their simplest form or not.' $\begin{array}{lllllllll} \frac{3}{15} & \frac{2}{5} & \frac{4}{20} & \frac{25}{36} & \frac{1}{6} & \frac{7}{21} & \frac{18}{30} & \frac{9}{17} \\ & & \frac{5}{15} & \frac{11}{20} & \frac{23}{30} & & \end{array}$ $4 / 20$ is not in its simplest form because four is a common factor of 4 and 20 $23 / 50$ is in its simplest form because one is the only common factor of 23 and 30.
Comparing Fractions		
is__lot of \square is __lots of \square I know that is less than \qquad is less than \square	Language / structure	$\frac{1}{4}<\frac{3}{4}$ $1 / 4$ is I lots of $1 / 4$ $3 / 4$ is 3 lots fo $1 / 4$ I know that I is less than 3 so $1 / 4$ is less than $3 / 4$.
When we compare fractions with the same denominator, the greater the numerator, the greater the fraction.	Generalisation	
When comparing unit fractions, the greater the denominator the smaller the fraction.	Generalisation	
When we compare fractions with the same numerator, the greater the denominator, the smaller the fraction.	Generalisation	
To compare fractions with different numerators and denominator convert to common denominators.	Generalisation	$\frac{1}{3}$ (C) $\frac{3}{4}$ \downarrow \downarrow $\frac{4}{12}$ (C) $\frac{9}{12}$

Stem Sentences

Fractions

Fractions

	The parts are \qquad and \qquad The total or whole is \qquad	Language / structure.	'The parts are $\frac{2}{5}$ and $1 \frac{1}{5}$. The total, or whole, is $1 \frac{3}{5}$.'
	Related fractions have denominators where one denominator is a multiple of the other.	Generalisation	$\frac{1}{3}$ and $\frac{1}{9}$ We can change $\frac{1}{3}$ to $\frac{3}{9}$.'
	and $=$ are realted fractions because the denominator \qquad is a multiple of the other denominator \qquad	Structure / language	$\frac{1}{16}$ and $\frac{1}{4}$ are related fractions because the denominator, "16", is a multiple of the other denominator, "4"."
	Fractions must have the same denominator before they can be added or subtracted.	Generalisation	
	When fractions have the same denominator, we call this a common denominator.	Generalisation	
	To add or subtract fractions with different denominators, first convert to fractions with a common denominator.	Generalisation	$\begin{aligned} \frac{2 x}{36}+\frac{1}{6} & =\frac{2}{6}+\frac{1}{6} \\ & =\frac{2+1}{6}=\frac{31}{6} \end{aligned}$ To solve $1 / 3+1 / 6$, convert $1 / 3$ to $2 / 6$ by scaling 1 and 3 up by two then add $2 / 6$ and $1 / 6$ together.
	To find a common denominator, identify the lowest common multiple of the denominators then create an equivalent fraction.	Generalisation	Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: 5, 10, 15 The lowest common multiple of 3 and 5 is 15 .
	We can find a common denominator for two nonrelated fractions by multiplying their denominators.	Generalisation	If you multiply the two denominators 3 and 5 you will get the common denominator product of 15 .

Stem Sentences

Fractions

Multiplying whole numbers and fractions

Multiplying whole numbers and fractions		
The whole has been divided into \qquad equal parts, and one of these parts is \qquad	Structure	$\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=9 \times \frac{1}{9}$ 'The whole has been divided intonine equal parts, and one of these parts is $\frac{1}{9}$.
\qquad $\operatorname{lot}(\mathrm{s})$ of \qquad is equal to \qquad	Structure / language	$=\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}$
To multiply a fraction and a whole number, we multiply the numerator by the whole number and keep the denominator the same.	Generalisation	
\qquad lots of \qquad is equal to \qquad lots of \qquad .	Structure	Commutativity: $\begin{aligned} & 3 \times \frac{4}{5}=\frac{12}{5}=2 \frac{2}{5} \\ & \frac{4}{5} \times 3=\frac{12}{5}=2 \frac{2}{5} \\ & 3 \times 4 / 5=4 / 5 \times 3 \end{aligned}$
	Structure / language	15 y^{3} $\underbrace{3}$ $\underbrace{3}$ $\underbrace{3}$ 3 'Each part is $\frac{1}{5}$ of the whole; $\frac{1}{5}$ of 15 is 3 .'
\qquad of __ = \qquad \qquad lots of \qquad $=$ \qquad	Structure / language	$y=5$ $\begin{aligned} & \frac{1}{2} \text { of } 10=5^{\prime} \\ & 2 \text { lots of } 5=10 . ' \end{aligned}$
When a whole number is multiplied by a unit fraction, it makes the whole number smaller	Generalisation	

Stem Sentences

Fractions

Fractions

	To divide by \qquad we can multiply by \qquad	Structure	$\left.\begin{array}{l} \frac{1}{3} \div 4=\frac{1}{12} \\ \frac{1}{3} \times \frac{1}{4}=\frac{1}{12} \end{array}\right\}$			
	If we divide into \qquad equal groups, then each of the groups is because \qquad \div = \qquad	Structure	If we divide six I/7 into 3 equal group groups os			$\begin{aligned} & =2 / 7 \\ & \text { of the } \\ & 3=2 \end{aligned}$
	If the divisor is a factor of the numerator, just divide the numerator by the denominator and keep the denominator the same.	Generalisation	$\frac{8}{10} \div 4=\frac{2}{10}$			
Linking fractions, decimals and percentages						
	In order to use a place value chart to help convert a fraction to a decimal, the fraction must be expressed as a tenth, hundredth or thousandth.	Generalisation	$\frac{1}{5}=\frac{2}{10}$ ones tenths 0 2			
	A fraction can be converted into a decimal by dividing the numerator by the denominator.	Generalisation	$\frac{1}{5}=5 \sqrt[0 \cdot 2]{1 \cdot 10}$			
	or \square is equivalent to \qquad 'We know that \qquad $<$ \qquad	Structure	'0.6 is equivalent to $\frac{3}{5}$.' We know that $\frac{3}{5}<\frac{4}{5}$, so $0.6<\frac{4}{5}$.' $\left.\begin{array}{l} 0.6<\frac{4}{5} \\ 0.6=\frac{3}{5} \\ \frac{3}{5}<\frac{4}{5} \end{array}\right)$			
	In order to convert a percentages to a fraction, first convert it to a fraction with a denominator of 100 then simplify.	Generalisation	$45 \%=\frac{\square}{100}=\frac{\square}{20} \quad 12 \%=\frac{12}{100}=\frac{3}{25}$			
	To find 50% of a number, halve it.	Generalisation	'Zara is doing a 420 km charity bike ride. So far, she has completed 50% of the route. How far has she cycled?' - ' 100% of 420 km is 420 km .' - ' 50% of 420 km is $\frac{1}{2}$ of 420 km .' - 'Zara has cycled 210 km .'			

Stem Sentences

Fractions

To find 10% of a number, divide it by ten.	Generalisation	'Rishi has completed 10\% of the same bike ride. How far has he cycled?' - ' 100% of 420 km is 420 km .' - '10\% of 420 km is $\frac{1}{10}$ of 420 km .' - 'Rishi has cycled 42 km.'
To find I\% of a number, divide it by hundred.	Generalisation	' 100% of 420 km is $420 \mathrm{~km} .^{\prime}$ ' 1% of 420 km is $\frac{1}{100}$ of 420 km .' 'James has cycled 4.2 km.'

