Stem Sentences Number, Addition \& Subtraction

Comparison of quantities and measures		
The \qquad is heavier than the \qquad The \qquad is lighter than the \qquad	Language	The elephant is heavier than the mouse. The mouse is lighter than the elephant.
The \qquad is the same length as the \qquad The \qquad is the same length as the \qquad	Language	The pen is the same length as the pencil. The pencil is the same length as the pen.
There are more \qquad than \qquad There are fewer \qquad than \qquad .	Language	There are more people than hats. There are fewer hats than people.
Wholes and parts		
This is a whole \qquad because I have all of it.	Language/ Structure	This is a whole apple because I have all of it.
This is not a whole \qquad because I don't have all of it.	Language/ Structure	This is not a whole carrot because I don't have all of it. This is not a whole carrot because I only have part of it.
This is not a whole \qquad because I only have part of it.	Language/ Structure	
A whole can be split into two parts in lots of different ways.	Generalisation	

A whole is always bigger than a part of	Generalisation	
the whole.		
A part is always smaller than its whole.	Generalisation	
A whole can be split into more than two parts in lots of different ways.	Generalisation	

Stem Sentences
 Number, Addition \& Subtraction

The___represents the __ counters.	

The five represents all the counters.
The three represents the blue counters.
The two represents the red counters.

Stem Sentences
 Number, Addition \& Subtraction

There are \qquad tens which is \qquad and
 ones which is \qquad . This makes $\overline{\text { The }}$ altogether. _r represents \qquad tens. It has a value of \qquad -

The \qquad represents \qquad ones. It has a value of \qquad .

Structure

There are two tens which is twenty and three ones which is three. This makes twenty-three altogether: 23.
The ' 2 ' represents two tens. It has a value of twenty. The ' 3 ' represents three ones. It has a value of three.

Stem Sentences
 Number, Addition \& Subtraction

All multiples of ten end with a zero.	Generalisation	Digits 10 20 30 40 50	What it means 1 ten 2 tens 3 tens 4 tens 5 tens		
We have ___ tens. We call this __.	Language/ structure				
This is the number \qquad . We write the \qquad then the \qquad	Structure	forty-two four tens two ones -42 . This is the number forty-two. We write the four then the two.			
This is \qquad Ten more than \qquad is \qquad \qquad is ten more than \qquad This is \qquad . Ten less than \qquad is \qquad \qquad is ten less than -. \qquad	Structure	\square This is thirty. Ten more than thirty is forty. Forty is ten more than thirty. This is forty. Ten less than forty is thirty. Thirty is ten less than forty.			
I know that \qquad plus \qquad is equal to $\overline{\text { So, }}$ \qquad tens plus \qquad tens is equal to \qquad tens.	Structure	$2 \text { tens }+5 \text { tens }=7 \text { tens }$ I know that 2 plus 5 is equal to 7 . So, 2 tens plus 5 tens is equal to 7 tens.			

1 know that___ minus__ is equal to
So,
tens.

1 know that 5 minus 2 is equal to 3 .
So, 5 tens minus 2 tens is equal to 3 tens.

Stem Sentences
 Number, Addition \& Subtraction

I know that \qquad plus \qquad is equal to ten so \qquad plus \qquad is equal to \qquad	Structure	I know that 6 plus 4 is equal to 10 so 16 plus 4 is equal to 20.
I know that \qquad minus \qquad is equal to ten so \qquad minus \qquad is equal to \qquad	Structure	I know that 10 minus 3 is equal to 7 so 20 minus 3 is equal to 17 .
To compare two digit numbers, we need to compare the tens digits; if the tens digits are the same, we need to compare the ones digits.	Generalisation structure	
To compare three digit numbers, we need to compare the hundreds digit; if the hundreds digits are the same, we need to compare the tens digits; if the	Generalisation structure	

tens digits are the same, we need to compare the ones digits.		
To compare two numbers, we compare digits with the same place value, starting with the largest place value digit.	Generalisation	

Stem Sentences
 Number, Addition \& Subtraction

When we find ten more, the tens digit changes and the ones digit stays the same. When we find ten less, the tens digit changes and the ones digit stays the same.	Generalisation	
We had \qquad tens and \qquad ones. Ten more gives us \qquad tens and \qquad ones.	Structure	
We had \qquad tens and \qquad ones. Ten less gives us \qquad tens and \qquad ones.	Structure	
One part is ten, the other part is \qquad and the whole is . \qquad	Structure	One part is ten, the other part is 36 and the whole is 46 .
There are one hundred ones in one hundred.	Structure	
There are ten tens in one hundred.	Structure	\leftrightarrow
One hundred is divided into \qquad equal parts so each part/ division has a value of \qquad	Structure	100 $?$ $?$ $?$ $?$ One hundred is divided into four equal parts so each part has a value of 25 .
\qquad plus \qquad is equal to \qquad so \qquad tens plus \qquad tens is equal to \qquad tens. \qquad plus \qquad is equal to 100 .	Structure	\square \square 7 plus 3 is equal to 10 so 7 tens plus 3 tens is equal to 10 tens. 70 plus 30 is equal to 100 .
Ten minus \qquad is equal to \qquad So ten tens minus \qquad tens is equal to \qquad tens. 100 minus \qquad is equal to \qquad	Structure	10 7 310 tens 7 tens 3 tens 10 minus 3 is equal to 7 . So 10 tens minus 3 tens is equal to 7 tens. 100 minus 30 is 70 .
There are \qquad groups of ten. There is \qquad group of 100 and \qquad more tens. There are \qquad altogether.	Structure	There are 14 groups of ten. There is one group of 100 and 4 more tens. There are 140 altogether.
I know that \qquad plus \qquad is equal to \qquad . (single digit addends)	Structure	I know that seven plus five is equal to twelve. So seven tens plus five tens is equal to twelve tens. 70 plus 50 is equal to I 20 .

So _tens plustens is equal to tens. (multiple-of-ten addends) is equal to one hundred		
and		

Stem Sentences
 Number, Addition \& Subtraction

Stem Sentences
 Number, Addition \& Subtraction

There are \qquad and . \qquad We can write this as \qquad plus \qquad The \qquad represents the \qquad . The \qquad represents the \qquad .	Structure	There are four open umbrellas and five closed umbrellas. We can write this as four plus five. The four represents the four open umbrellas. The five represents the five closed umbrellas.
\qquad is equal to \qquad plus \qquad \qquad plus \qquad is equal to \qquad \qquad and \qquad are the addends. \qquad is the sum.	Structure	Five is equal to four plus one. Four plus one is equal to five. Four and one are the addends. Five is the sum.
Addend plus addend equals sum. Sum equals addend plus addend.	Language	
Additive structures: augmentation and reduction		
First... then... now... See: ncetm_mm_spl_yl_se06_teach.pdf for lots more examples of how to use 'first... then... now' in the context of augmentation and reduction.	Language	First, four children were sitting on the bus. Then three more children got on the bus. Now seven children are sitting on the bus. First, there were four children in the car. Then one child got out. Now there are three children in the car.
Odd and even numbers		

Stem Sentences
 Number, Addition \& Subtraction

is made of pairs; it is an even number. is not made of pairs; it is an odd number.	Structure/	
	Language	
		6 is made of pairs; it is an even number. 7 is not made of pairs; it is an odd number.
Numbers that can be made out of groups of two are even numbers. Numbers that cannot be made out of groups of two are odd numbers.		Generalisation

Stem Sentences
 Number, Addition \& Subtraction

' a ' is between \qquad and \qquad The previous multiple of one ten/ hundred/ thousand is \qquad . The next multiple of one ten/ hundred/ thousand is \qquad ' a ' is nearest to \qquad ten/ hundred/ thousand. ' a ' is \qquad when rounded to the nearest ten/ hundred/ thousand.	Structure	1321 is between 1000 and 2000. The previous multiple of one thousand is 1000 . The next multiple of one thousand is 2000. 132 I is nearest to 1000 . 1321 is 1000 when rounded to the nearest thousand.
\qquad is between \qquad and \qquad \qquad is the previous whole number. \qquad is the next whole number. \qquad is nearest to \qquad \qquad rounded to the nearest whole number is \qquad	Structure	3.4 is between 3 and 4 . 3 is the previous whole number. 4 is the next whole number. 3.4 is nearest to 3 . 3.4 rounded to the nearest whole number is 3 .
When rounding to the nearest \qquad , if the \qquad digit is 4 or less we round down. If the \qquad digit is 5 or more, we round up.	Generalisation	When rounding to the nearest thousand, if the hundreds digit is 4 or less we round down. If the hundreds digit is 5 or more, we round up.
The midpoint between/ of \qquad and \qquad is \qquad , so the midpoint between/ of \qquad thousand and \qquad thousand is \qquad .	Structure	The midpoint between ten and twenty is fifteen, so the midpoint between ten-thousand and twenty-thousand is fifteen thousand.

Stem Sentences Number, Addition \& Subtraction

\qquad is greater/ less than \qquad so \qquad thousand is greater/ less than \qquad thousand.	Structure	$\begin{array}{ll} \hline 54 & <58 \\ 54000 & <58000 \end{array}$ 58 is greater than 54 , so 58 thousand is greater than 54 thousand.
Negative numbers		
Negative numbers are below/ less than zero. Positive numbers are above/ greater than zero.	Generalisation	
Negative numbers are to the left of zero. Positive numbers are to the right of zero.	Generalisation	
Zero is neither negative nor positive	Generalisation	
For both positive and negative numbers, the larger the value of the number, the further away it is from zero.	Generalisation	
For negative temperatures, the further away from zero it is, the colder the temperature. For positive temperatures, the further away from zero it is, the warmer the temperature. (Can be adapted to other contexts)	Generalisation	

The difference between two numbers is always a positive number, regardless of whether the numbers are negative or positive.
If we add a positive number, the number gets higher/ greater.
If we subtract a positive number, the number gets lower/ smaller. If we add a negative number, the number gets smaller/ lower.
If we subtract a negative number, the number gets higher/ greater.

Generalisation	
Generalisation	The Happiometer! Add something positive (like chocolate!) Mood goes UP! Take away something positive (like a break time) (-) Mood goes down. Add something negative (like a telling off) Mood goes down Take away something negative (like the rain going away) Mood goes UP!

Addition and subtraction strategies

If we change the order of the addends, the sum remains the same. We can change the order of the addends and the sum remains the same.	Structure	
Adding one gives one more.	Generalisation	
Subtracting one gives one less.	Generalisation	
Consecutive numbers have a difference of one.	Generalisation	

Stem Sentences
 Number, Addition \& Subtraction

When zero is added to a number, the number remains unchanged.	Generalisation	
When zero is subtracted from a number, the number remains unchanged.	Generalisation	
Subtracting a number from itself gives a difference of zero.	Generalisation	
There are Altogether there are		

We can look for pairs of addends which sum to ten.	Generalisation	
\qquad $\overline{\text { plus }}$ plus is equal to ten, then ten is equal to	Structure	$7+3+4$ Seven plus three is equal to ten, then ten plus four is equal to fourteen.
First I partition the \qquad \qquad plus \qquad is equal to \qquad Then \qquad plus \qquad is equal to ten... ...and ten plus \qquad is equal to - \qquad	Structure	First I partition the five: three plus 2 is equal to five. Then seven plus three is equal to ten... ...and ten plus two is equal to twelve.
There are \qquad more \qquad than \qquad There are \qquad fewer \qquad than \qquad	Structure	There are two more red cars than blue cars. There are two fewer blue cars than red cars.

Stem Sentences
 Number, Addition \& Subtraction

The difference between the number of \qquad and the number of \qquad is \qquad .	Structure	The difference between the number of blue cars and the number of red cars is two.
The more we subtract, the less we are left with. The less we subtract, the more we are left with.	Generalisation	$\underset{\text { 10-4<10-3 }}{\substack{0 \\ 0 \\ 0}}$
The \qquad represents the number of \qquad . The \qquad represents the number of \qquad . The \qquad represents the difference between the number of \qquad and the number of , \qquad	Structure	The 8 represents the number of children. The 3 represents the number of pencils. The 5 represents the difference between the number of children and the number of pencils.
Subtraction is not commutative	Generalisation	6-3 is not equal to 3-6.
To subtract \qquad , we can subtract the \qquad then subtract the -. \qquad	Structure	To subtract 23 . We can subtract the 20 then subtract the 3.
For a subtraction calculation where both numbers have the same ones	Generalisation	

digit, the difference is a multiple of ten.		
First we add: \qquad plus \qquad is equal to \qquad ... then we adjust: \qquad minus \qquad is equal to \qquad		First we add: 52 plus 30 is equal to 82 ... then we adjust: 82 minus I is 8 I .
For calculations that involve both additions and subtraction steps, we can add then subtract, or subtract then add; the final answer is the same.	Generalisation	
The value of the expressions on each side of the equals sign must be equal.	Generalisation	

Stem Sentences Number, Addition \& Subtraction

If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.	Generalisation	
(connected with above) I have added \qquad to this addend so I must subtract \qquad from the other addend to keep the sum the same.	Structure	I have added ten to 520 so I must subtract ten from 290 to keep the sum the same.
If one addend is increased/ decreased by an amount and the other addend remains unchanged, the sum is also increased/decreased by the same amount.	Generalisation	
(connected with above) l've added/ subtracted \qquad to/ from this addend and kept the other addend the same so I must add/ subtract \qquad to/ from the sum.	Structure	I have added ten to 4 and kept the other addend the same so I must add ten to 7 also.
If the sum increases/ decreases by an amount and one addend has stayed the same, the other addend must increase/ decrease by the same amount.	Generalisation	$\begin{aligned} & 36+47=83 \\ & \\ & 36 \\ & 36+4=85 \end{aligned}$
(connected with above) The sum has increased/decreased by \qquad ; one addend has stayed the same, so the other addend must increase/ decrease by \qquad .	Structure	The sum has increased by 2 ; one addend has stayed the same, so the other addend must also increase by 2 .

If the minuend and the subtrahend are changed by the same amount, the difference remains the same.

Stem Sentences
 Number, Addition \& Subtraction

| In a balanced equation, If I add an
 amount to the minuend or subtrahend,
 I need to add the same amount to the
 subtrahend or minuend to keep the
 difference the same. | Generalisation |
| :--- | :--- | :--- |
| In a balanced equation, if I subtract an | |
| amount from the minuend or | |
| subtrahend, Ineed to subtract the | |
| same amount from the subtrahend or | |
| minuend to keep the difference the | |
| same. | |

[^0] to/ from the difference.

Stem Sentences
 Number, Addition \& Subtraction

Stem Sentences
 Number, Addition \& Subtraction

| tenths plus tenths is equal |
| :--- | :--- | :--- | :--- | :--- |
| to ten tenths, which is equal to one. |
| One is equal to ten tenths; ten tenths |
| minus__ tenths is equal to - |
| tenths. |

[^0]: subtrahend so I must subtract/ add

