

Com	Comparison of quantities and measures			
The is heavier than the The is lighter than the	Language	The elephant is heavier than the mouse. The mouse is lighter than the elephant.		
The is the same length as the The is the same length as the	Language	The pen is the same length as the pencil. The pencil is the same length as the pen.		
There are more than There are fewer than	Language	There are more people than hats. There are fewer hats than people.		
	Wholes	and parts		
This is a whole because I have all of it.	Language/ Structure	This is a whole apple because I have all of it.		
This is not a whole because I don't have all of it.	Language/ Structure			
This is not a whole because I only have part of it.	Language/ Structure	This is not a whole carrot because I don't have all of it. This is not a whole carrot because I only have part of it.		
A whole can be split into two parts in lots of different ways.	Generalisation	,,		
A whole is always bigger than a part of the whole.	Generalisation	****		
A part is always smaller than its whole. A whole can be split into more than	Generalisation Generalisation			
two parts in lots of different ways	Generalisation			

This is a whole group of because none are missing; I have all of them.	Structure	This is a whole group of cakes because none are missing; I have all of them.		
This is not a whole group of because we don't have all of them; some of them are missing.	Structure	This is not a whole group of cakes because we don't have all of them; some of them are missing.		
This is not a whole group of because only part of the has in.	Structure	This is not a whole group of cakes because only part of the tray has cakes in.		
This is the whole group of I have all of them.	Language/ Structure	Charlotte's group of six cars:		
		This is the whole group of Charlotte's cars. I have all of them.		
There are in the whole group. There are in this part of the group.	Structure	There are four pencils in the whole group. There are three pencils in this part of the group		
is the whole; is a part and is a part.	Structure	3 is the whole; 1 2 I is a part and 2 is a part.		
A whole split into equal parts can be seen as both an additive and a multiplicative structure.	Generalisation	4 4 4		
A whole split into unequal parts can be seen as an additive structure.		3 4 5		
The whole minus the known part(s) is equal to the missing part. The sum of the known part(s) plus the missing part is equal to the whole	Generalisation	360 g ? 125 g 55 g		
Composition of numbers inc. place value				
The represents all the counters. The represents the counters.	Structure			
The represents the counters.		The five represents all the counters. The three represents the blue counters. The two represents the red counters.		

The whole is and one part is so the other part must be	Structure	The whole is five and one part is two so the other part must be three.
The number before a given number is one less. The number after a given number is one more.	Generalisation	
Adding one gives one more. Subtracting one gives one less.	Generalisation Generalisation	1 2 3 4 5 one two three four five
is five and more.	Structure	Six is five and one more.
is equal to ten plus	Structure	Twelve is equal to ten plus two. $12 = 10 + 2$
This is ten ones. It is also one ten	Structure	
ones are equal to ten. We have group(s) of ten. We have ten(s).	Structure	Ten ones ae equal to one ten. We have one group of ten. We have one ten.
This is the number The represents tens.	Structure	This is the number ten. The I represents one ten.
There are tens which is and ones which is This makes altogether. The represents tens. It has a value of The represents ones. It has a value of	Structure	There are two tens which is twenty and three ones which is three. This makes twenty-three altogether: 23. The '2' represents two tens. It has a value of twenty. The '3' represents three ones. It has a value of three.

	_	•			
All multiples of ten end with a zero.	Generalisation	Digits	What it means		
		10	1 ten		
		20	2 tens		
		30	3 tens		
		40	4 tens		
		50	5 tens		
We have tens. We call this	Language/ structure	sixt	y		
		six	tens		
This is the number We write the	Structure	forty-	two		
		four tens to	wo ones		
		This is the nutwo.	umber forty-t	wo. We write	the four then the
This is is is is	Structure	00000000	0000000		
is ten more than			1		
This is Ten less than is is ten less than			,		
		0000000	00000000	0000	
		00000000	000000000	This is t	hirty. Ten more
		than thirty is			,
			more than thi	rty. n forty is thirty	,
			less than fort		,
I know that plus is equal to So, tens plus tens is equal to	Structure	BB	BB	BBB	
tens plus tens is equal to tens.		2 to me	40 40	C to us	7 +000
		2 tens		5 tens	= 7 tens
			2 plus 5 is equus 5 tens is eq	ual to 7. qual to 7 tens.	
I know that minus is equal to	Structure				7
	Structure				
So, tens minus tens is equal to		3 0			
tens.			• (tens	
			\mathcal{A}	\sim	5 tens
			(2 tens	$\begin{pmatrix} 3 \\ \text{tens} \end{pmatrix}$	2 tens 3 tens
		I know that 5	5 minus 2 is e	qual to 3.	

So, 5 tens minus 2 tens is equal to 3 tens.

I know that plus is equal to ten so plus is equal to	Structure	10 20 16 4 I know that 6 plus 4 is equal to 10 so 16 plus 4 is equal to 20.
I know that minus is equal to ten so minus is equal to	Structure	10 20 17 I know that I0 minus 3 is equal to 7 so 20 minus 3 is equal to 17.
To compare two digit numbers, we need to compare the tens digits; if the tens digits are the same, we need to compare the ones digits.	Generalisation structure	
To compare three digit numbers, we need to compare the hundreds digit; if the hundreds digits are the same, we need to compare the tens digits; if the	Generalisation structure	
tens digits are the same, we need to compare the ones digits.		
To compare two numbers, we compare digits with the same place value, starting with the largest place value digit.	Generalisation	

When we find ten more, the tens digit changes and the ones digit stays the same. When we find ten less, the tens digit changes and the ones digit stays the same.	Generalisation	
We had tens and ones. Ten more gives us tens and ones.	Structure	10 more 32 42
We had tens and ones. Ten less gives us tens and ones.	Structure	10 less 22
One part is ten, the other part is and the whole is	Structure	One part is ten, the other part is 36 and the whole is 46.
There are one hundred ones in one hundred.	Structure	
There are ten tens in one hundred.	Structure	
One hundred is divided into equal parts so each part/ division has a value of	Structure	One hundred is divided into four equal parts so each part has a value of 25.
plus is equal to so tens plus tens is equal to tens. plus is equal to 100.	Structure	7 plus 3 is equal to 10 so 7 tens plus 3 tens is equal to 10 tens. 70 plus 30 is equal to 100.
Ten minus is equal to So ten tens minus tens is equal to tens. I 00 minus is equal to	Structure	10 10 tens 7 10 tens 7 tens 3 tens 10 minus 3 is equal to 7. So 10 tens minus 3 tens is equal to 7 tens. 100 minus 30 is 70.
There are groups of ten. There is group of 100 and more tens. There are altogether.	Structure	There are 14 groups of ten. There is one group of 100 and 4 more tens. There are 140 altogether.
I know that plus is equal to (single digit addends)	Structure	I know that seven plus five is equal to twelve. So seven tens plus five tens is equal to twelve tens. 70 plus 50 is equal to 120.
So tens plus tens is equal to		
tens. (multiple-of-ten addends) plus is equal to one hundred and (number names)		

I know that minus is equal to (bridging ten) So tens minus tens is equal to tens. (bridging ten tens) One hundred and minus is equal to (number names)	Structure	I know that twelve minus five is equal to seven. So twelve tens minus five tens is equal to seven tens. 120 minus 50 is equal to 70.
There is group of 100 and more. There are	Structure	There is I group of 100 and 24 more. There are one hundred and twenty-four.
is ones.	Structure	243 is 243 ones.
is hundreds and ones.		243 is 2 hundreds and 43 ones.
is tens and ones.		243 is 24 tens and 3 ones.
is hundreds, tens and ones.		243 is 2 hundreds, 4 tens and 3 ones.
There are ten hundreds in one	Structure	
thousand.		
There are one hundred tens in one		
thousand.		
There are one thousand ones in one		
thousand.		Thousands Hundreds Tens Ones
hundred plus hundred is equal	Structure	
to hundred.		(11) (1,100)
We know there are ten hundreds in		
one thousand, so hundred plus		6 5 (a hundred) (500 500 500 500 500 500 500 500 500 50
hundred is equal to thousand		Six hundred plus five
hundred.		hundred is equal to eleven hundred. We know there are
		ten hundreds in one thousand, so six hundred plus five
NA/a las acceptante and a last last last last last last last la		hundred is equal to one thousand one hundred.
We know there are ten hundreds in		We know there are ten hundreds in one thousand, so
one thousand, so thousand		one thousand one hundred is equal to eleven hundred.
hundred is equal to hundred. hundred minus hundred is		eleven hundred minus six hundred is equal to five
nundred minus nundred is		hundred.
equal to hundred.		
There are ten one thousands in		
tenthousand.		
There are one hundred one hundreds in		
ten-thousand.		
There are one thousand tens in		
tenthousand.		
There are ten thousand ones in		
tenthousand.		
Additive	structures: agg	regation and partitioning

There are and We can write this as plus The represents the The represents the	Structure	There are four open umbrellas and five closed umbrellas. We can write this as four plus five. The four represents the four open umbrellas. The five represents the five closed umbrellas.
is equal to plus plus is equal to and are the addends. is the sum.	Structure	Five is equal to four plus one. Four plus one is equal to five. Four and one are the addends. Five is the sum.
Addend plus addend equals sum. Sum equals addend plus addend.	Language	
Additive	structures: aug	mentation and reduction
First then now See: ncetm_mm_spl_yl_se06_teach.pdf for lots more examples of how to use 'first then now' in the context of augmentation and reduction.	Language	First, four children were sitting on the bus. Then three more children got on the bus. Now seven children are sitting on the bus.
		First, there were four children in the car. Then one child got out. Now there are three children in the car.
	Odd and a	ven numbers

is made of pairs; it is an even number is not made of pairs; it is an odd number.	Structure/ Language	6 is made of pairs; it is an even number. 7 is not made of pairs; it is an odd number.
Numbers that can be made out of groups of two are even numbers. Numbers that cannot be made out of groups of two are odd numbers.	Generalisation	

groups of two are odd numbers.		
Even numbers can be partitioned into two odd parts or two even parts.	Generalisation	
Odd numbers can be partitioned into one odd part and one even part.	Generalisation	
If the whole is odd and one part is even, the other part must be odd. If the whole is odd and one part is odd, the other part must be even. If the whole is even and one part is even, the other part must be even. If the whole is even and one part is odd, the other part must be odd.	Generalisation	
Adding two to an odd number gives the next odd number. Adding two to an even number gives the next even number. Subtracting two from an odd number gives the previous odd number. Subtracting two from an even number gives the previous even number.	Generalisation	+2 -2 -2
Consecutive odd numbers have a difference of two. Consecutive even numbers have a difference of two.	Generalisation	

Doubling a whole number always gives an even number	Generalisation	1+1=2 2+2=4 3+3=6 4+4=8 5+5=10
We know the number is odd because the ones digit is odd. We know the number is even because the ones digit is even.	Generalisation	
A number is odd if the ones digit is odd. It can't be made from groups of two. A number is even if the ones digit is even. It can be made from groups of two.	Generalisation	
	Rou	nding
is between and is the previous multiple of ten/ hundred/ thousand is the next multiple of ten/ hundred/ thousand.	Structure/ language	43 is between 40 and 50.40 is the previous multiple of ten.50 is the next multiple of ten.
'a' is between and The previous multiple of one ten/ hundred/ thousand is The next multiple of one ten/ hundred/ thousand is 'a' is nearest to ten/ hundred/ thousand. 'a' is when rounded to the nearest ten/ hundred/ thousand.	Structure	previous multiple of 1,000 1,000 < 1,321 < 2,000 1321 is between 1000 and 2000. The previous multiple of one thousand is 1000. The next multiple of one thousand is 2000. 1321 is nearest to 1000. 1321 is 1000 when rounded to the nearest thousand.
is between and is the previous whole number. is the next whole number. is nearest to rounded to the nearest whole number is	Structure	 3.4 is between 3 and 4. 3 is the previous whole number. 4 is the next whole number. 3.4 is nearest to 3. 3.4 rounded to the nearest whole number is 3.
When rounding to the nearest, if the digit is 4 or less we round down. If the digit is 5 or more, we round up.	Generalisation	When rounding to the nearest thousand, if the hundreds digit is 4 or less we round down. If the hundreds digit is 5 or more, we round up.
The midpoint between/ of and is, so the midpoint between/ of thousand and thousand is	Structure	The midpoint between ten and twenty is fifteen, so the midpoint between ten-thousand and twenty-thousand is fifteen thousand the standard between ten-thousand and twenty-thousand is fifteen thousand the standard between ten-thousand and twenty-thousand is fifteen thousand the standard between ten-thousand and twenty-thousand is fifteen thousand

is greater/ less than so thousand is greater/ less than	Structure	54 < 58 54000 < 58000		
thousand.		58 is greater than 54, so 58 thousand is greater than 54 thousand.		
	Negative	e numbers		
Negative numbers are below/ less than zero. Positive numbers are above/ greater than zero.	Generalisation	0		
Negative numbers are to the left of zero. Positive numbers are to the right of zero.	Generalisation	left of zero		
Zero is neither negative nor positive	Generalisation			
For both positive and negative numbers, the larger the value of the number, the further away it is from zero.	Generalisation	<u>-5 -4 -3 -2 -1 0 1 2 3 4 5</u>		
For negative temperatures, the further away from zero it is, the colder the temperature. For positive temperatures, the further away from zero it is, the warmer the temperature. (Can be adapted to other contexts)	Generalisation			
The difference between two numbers is always a positive number, regardless of whether the numbers are negative or positive.	Generalisation			
If we add a positive number, the number gets higher/ greater. If we subtract a positive number, the number gets lower/ smaller. If we add a negative number, the number gets smaller/ lower. If we subtract a negative number, the number gets higher/ greater.	Generalisation	The Happiometer! Add something positive (like chocolate!) Mood goes UP! Take away something positive (like a break time) Mood goes down. Add something negative (like a telling off) Mood goes down Take away something negative (like the rain going away) Mood goes UP!		
Addition and subtraction strategies				
If we change the order of the addends, the sum remains the same. We can change the order of the addends and the sum remains the same.	Structure			
Adding one gives one more.	Generalisation			
Subtracting one gives one less.	Generalisation			
Consecutive numbers have a difference of one.	Generalisation			

When zero is added to a number, the number remains unchanged.	Generalisation	First Then Now 1
When zero is subtracted from a number, the number remains unchanged.	Generalisation	6 -0 6 6-0=6
Subtracting a number from itself gives a difference of zero.	Generalisation	6 -6 = 0
There are, and Altogether there are	Language	There are two red marbles, three blue marbles and five yellow marbles. Altogether, there are ten marbles.
When we add three numbers, the total will be the same whichever pair we add first.	Generalisation	
We can look for pairs of addends which sum to ten.	Generalisation	3 + 5 + 7 = 5 + 10
plus is equal to ten, then ten plus is equal to	Structure	7+ 3 + 4. Seven plus three is equal to ten, then ten plus four is equal to fourteen.
First I partition the: plus is equal to Then plus is equal to ten and ten plus is equal to	Structure	7+3=10 10+2=12 First I partition the five: three plus 2 is equal to five. Then seven plus three is equal to tenand ten plus two is equal to twelve.
There are more than There are fewer than	Structure	There are two more red cars than blue cars

There are two fewer blue cars than red cars.

The difference between the number of is	Structure	2 cars
		The difference between the number of blue cars and the number of red cars is two.
The more we subtract, the less we are left with. The less we subtract, the more we are left with.	Generalisation	10-4<10-3
The represents the number of The represents the number of The represents the difference between the number of and the number of,	Structure	The 8 represents the number of children. The 3
		represents the number of pencils. The 5 represents the difference between the number of children and the number of pencils.
Subtraction is not commutative	Generalisation	6-3 is not equal to $3-6$.
To subtract, we can subtract the then subtract the	Structure	$\frac{45 - 23}{20 - 3}$ To subtract 23. We can subtract the 20 then subtract the 3.
For a subtraction calculation where both numbers have the same ones	Generalisation	
digit, the difference is a multiple of ten.		
First we add: plus is equal to		+30
then we adjust: minus is equal to		52
For calculations that involve both additions and subtraction steps, we can add then subtract, or subtract then add; the final answer is the same.	Generalisation	
The value of the expressions on each side of the equals sign must be equal.	Generalisation	=

If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.	Generalisation	520 + 290 = 810 10
(connected with above) I have added to this addend so I must subtract from the other addend to keep the sum the same.	Structure	I have added ten to 520 so I must subtract ten from 290 to keep the sum the same.
If one addend is increased/ decreased by an amount and the other addend remains unchanged, the sum is also increased/ decreased by the same amount.	Generalisation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(connected with above) I've added/ subtracted to/ from this addend and kept the other addend the same so I must add/ subtract to/ from the sum.	Structure	I have added ten to 4 and kept the other addend the same so I must add ten to 7 also.
If the sum increases/ decreases by an amount and one addend has stayed the same, the other addend must increase/ decrease by the same amount.	Generalisation	36 + 47 = 83 +2
(connected with above) The sum has increased/ decreased by; one addend has stayed the same, so the other addend must increase/ decrease by	Structure	The sum has increased by 2; one addend has stayed the same, so the other addend must also increase by 2.
If the minuend and the subtrahend are changed by the same amount, the difference remains the same.	Generalisation	0 1 2 3 4 5 6 7 8 9 10 7-4=3

If the minuend and the subtrahend are changed by the same amount, the difference remains the same.	Generalisation	0 1 2 3 4 5 6 7 8 9 10 7-4=3 0 1 2 3 4 5 6 7 8 9 10 6-3=3 0 1 2 3 4 5 6 7 8 9 10 5-2=3
I've added/ subtracted to/ from the minuend and the subtrahend so the difference remains the same.	Structure	I've subtracted I from the minuend and the subtrahend so the difference remains the same.

In a balanced equation, If I add an amount to the minuend or subtrahend, I need to add the same amount to the subtrahend or minuend to keep the difference the same. In a balanced equation, if I subtract an amount from the minuend or subtrahend, I need to subtract the same amount from the subtrahend or minuend to keep the difference the same.	Generalisation	10-3 = 45- +35 10 - 3 = 45 - 38 +35
I've added to the minuend/ subtrahend, so I need to add to the subtrahend/ minuend to keep the difference the same. I've subtracted from the minuend/ subtrahend so I need to subtract from the subtrahend/ minuend to keep the difference the same.	Structure	I've added 35 to the minuend so I need to add 35 to the subtrahend to keep the difference the same.
If a certain amount is added to the minuend and the subtrahend is kept the same, the difference must be increased by the same amount.	Generalisation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
I've added to the minuend and kept the subtrahend the same, so I have to add to the difference.	Structure	I've added ten to the minuend and kept the subtrahend the same, so I have to add ten to the difference.
If the minuend is changed by an amount and the subtrahend is kept the same, the difference changes by the same amount.	Generalisation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
I've subtracted from the minuend and kept the subtrahend the same, so I must subtract from the difference.	Structure	I've subtracted ten from the minuend and kept the subtrahend the same, so I must subtract ten from the difference.
If the minuend is kept the same and the subtrahend is increased/ decreased by an amount, the difference must decrease/ increase by the same amount.	Generalisation	98 - 20 = 78 •10 •10 98 - 30 = 68
I've kept the minuend the same and added/ subtracted to/ from the	Structure	I've kept the minuend the same and added ten to the subtrahend so I must subtract ten from the difference.
subtrahend so I must subtract/ add to/ from the difference.		
Writton	algorithms for	addition and subtraction

	1 -	
For Dienes: We line up the ones; one(s) plus one(s). We line up the tens; ten(s) plus ten(s). For the column addition calculation: The is in the ones column- it represents one(s); the is in the ones column- it represents one(s). The is in the tens column- it represents ten(s); the is in the tens column- it represents ten(s). In column addition, we start at the right hand side. If the column sum is equal to ten or more, we must regroup.	Generalisation Generalisation	We line up the ones; three ones plus five ones. We line up the tens; four tens plus two tens. The '3' is in the ones column- it represents three ones. The '5' is in the ones column- it represents five ones. The '4' is in the tens column- it represents four tens. The '2' is in the tens column- it represents two tens.
	Dec	imals
The whole is divided into ten/ a hundred equal parts and of them is/ are shaded; this is tenth(s)/ hundred(s) of the whole.	Structure	The whole is divided into ten equal parts and one of them is shaded; this is one tenth of the whole.
If a digit is moved one/ two column(s) to the left, the number represented becomes ten/ one hundred times bigger/ ten/ one hundred times the size. If a digit is moved one/ two column to the right, the number represented becomes ten/ one hundred times smaller; we can also say it becomes one tenth/ one hundredth the size.	Structure/ language	ten times ten times smaller smaller smaller one tenth one tenth the size the size 1,000s 1s 1s 1s 1s 1s 1s 1s 1s 1s
One tenth/ hundredth can be written as 0.1/ 0.01 so tenths/ hundredths can be written as 0/ 0.0	Structure	One tenth can be written as 0.1 so three tenths can be written as 0.3.
I say point but I think and tenth(s). I say point but I think and hundredths.	Language	I say forty-three point six but I think 43 and six tenths. I say five point zero six but I think 5 and six hundredths.

tenths plus tenths is equal to ten tenths, which is equal to one. One is equal to ten tenths; ten tenths minus tenths is equal to tenths.	Structure	Four tenths plus six tenths is equal to ten tenths, which is equal to one. One is equal to ten tenths; ten tenths minus four tenths is equal to six tenths.
hundredths plus hundredths is equal to ten hundredths, which is equal to one tenth. One tenth is equal to ten hundredth; ten hundredths minus hundredths is equal to hundredths.	Structure	Four hundredths plus six hundredths is equal to ten hundredths, which is equal to one tenth. One tenth is equal to ten hundredths is equal to six hundredths.
When one tenth is divided into ten equal parts, each part is one hundredths of the whole; ten hundredths is equal to one tenth.	Generalisation	
Ten hundredths is equal to one tenth. Ten tenths is equal to one. One tenth is equal to ten hundredth. One is equal to ten tenths.	Structure	
One centimetre is one hundredth of a metre, so we can write one centimetre as zero-point-zero-one. Ten centimetres is one tenth of a metre, so we can write ten centimetres as zero-point-one.	Structure	0 10 m 100 cm cm cm
Ten groups of ten pence is equal to one pound, so ten pence is one tenth of a pound. One hundred groups of one penny is equal to one pound, so one penny is equal to one hundredth of a pound. Ten groups of one penny is one tenth of ten pence.	Structure	
The number to the left of the decimal point represents the number of whole pounds. The number to the right of the decimal point represents the number of additional pennies.	Structure	£1 (or 100p) 10p 1p 2 4 0 £ 2 + 4 0 £2.40

Credit: Enigma