Unitizing		
Examples of stem sentence	Type of stem sentence	
This counter has \qquad dots. It is worth \qquad	Structure	How much is each counter worth? This counter has 2 dots. It is worth 2. e. g The counter has 2 dots. It is worth 2 .
This is a \qquad pence coin, It has value of \qquad P	Structure	This is a $5 p$ coin. It has a value of 5 p .
I say two pence but I think two one pennies I say five pence but I think five one pennies. I say ten pence but I think ten one pennies.	Generalisation	I say ten pence but I think ten one pennies.
Each \qquad has \qquad parts parts Count in groups of \qquad \qquad	Language/ structure	Each bike has 2 wheels. - Count in groups of 2 .
Counting in Equal Groups		
The groups are equal because there are the same number in each group. The groups are unequal because there is a different number in each group.	Generalisation	The groups are

One group of \qquad Two group of \qquad Three groups of \qquad \qquad group(s) of \qquad	Structure	 Counting and unitising One group of 10 , two groups of 10 , three groups of $10 \ldots$ One ten, two tens, three tens, ... $10,20,30$
There are \qquad equal groups of \qquad There are \qquad in each group. There are \qquad groups of \qquad		How many equal groups are there? How many cakes are there in each group? There are five equal groups of cakes. There are three cakes in each group. There are five groups of three.
\qquad group(s) of \qquad \qquad group(s) of \qquad make \qquad	Language/ structure	One group of two, two groups of two, three groups of two.... One two, two twos, three threes. Ten groups of 2 make 10
There are \qquad coins Each coin has a value of \qquad P \qquad lots of \qquad p is \qquad P altogether	Structure/ language	00000000 (: $:(5: 5: 5$ There are nine coins Each coin has a value of $2 p$ This is $18 p$.

The \qquad cost \qquad Each coin has a value of P \qquad So I need \qquad coins. Count in \qquad s to check	Structure/ language	How many five-pence coins would you need to buy this rubber? The rubber cost 10p Each coin has a value of 5 p Sol need 2 coins. Check by counting in 5 s \qquad 5, 10.
\qquad represents the number of \qquad \qquad represents the number of \qquad in each \qquad	Structure	60. 5 6 represents the number of nests 3 represents the number of eggs in each next.

Repeated Addition.		
\qquad		3 add 3 add 3 add 3 $3+3+3+3$
Factors and products.		
There are \qquad groups of \qquad \qquad \qquad $+$ \qquad - \qquad \times \qquad	Structure / language	How many shows are there? Count in groups of two. \square $3 \times 2=6$ or $6=3 \times 2$ There are three groups of two; there are six altogether.
\qquad is a factor \qquad is a factor The product of \qquad and \qquad is \qquad \qquad is the product of \qquad and \qquad	Language / structure.	How many wheels altogether? Two, four, six, eight. There are eight wheels Four is a factor Two is a factor The product of four and two is eight Eight is the product of four and two.

\qquad represents the number of groups. \qquad represents the number in each group. \qquad groups of \qquad		5 represents the number of groups 2 represents the number in each group. 5 groups of 2 2 represnts the number of groups 5 represents the number in each group. 2 groups of 5
If there are \qquad equal groups, we can use the \qquad times table. \qquad is a factor so we can use the \qquad times table.	Structure	5 groups of $6=6$ groups of 5 If there are 5 equal groups, we can use the 5 times table. 5 is a factor so we can use the 5 tijmes table.
The product of \qquad and \qquad is equal to the product of \qquad and \qquad \qquad times \qquad is equal to \qquad times \qquad \qquad	Structure.	The product of 3 and 5 is equal to the product of 5 and 33 times 5 is equal to 5 times $3.3 \times 5=5 \times 3$
The order of the numbers does not matter.	Generalisation	$4 \times 5=5 \times 4$
No of groups \times group size $=$ product Group size \times no of groups = product.	Generalisation	

Connecting the times tables		
There are \qquad groups of \qquad There are \qquad groups of \qquad	Structure	There are 5 groups of ten There are 10 groups of 5 .
For every group of 10 , there are two groups of 5 . Products in the ten times table are also in the five times table. Even multiples of 5 are also multiples of 10.	Generalisation / structure.	
For every one group of four, there are two groups of two.	Generalisation / structure.	

Products in the four times table are also in the two times atble. The product of an even number and two is a product in the four times tables.	Generalisation / structure.	
Four is double two so: \qquad times four is double \qquad times two. \qquad fours is double \qquad twos. \qquad times two is half of \qquad times four. \qquad twos is half of \qquad fours.	Structure	Four is double two Five times four is double five times two. Five fours is double five twos. Five times two is half of five times four. Five twos is half of five fours.
Products in the eight times table are also in the four times table. The product of an even number and four is a product in the eight times table.	Generalisation / structure.	
Eight is double four, so \qquad eights is double \qquad fours. Four is half of eight, so \qquad fours is half of \qquad eights.	Structure	Eight is double four, so 5 eights is double 5 fours. Four is half of eight, so 5 fours is half of 5 eights. $\begin{aligned} & 5 \times 4=20 \quad \\ & 5 \times 8=40 \quad \text { (double 20). } \end{aligned}$

Products in the eight times table are also in the two and four times table. Products in the four times table are also in the two times table.	Generalisation / structure.	
For numbers with more than two digits: If the final two digits are divisiable by four then the number is divisible by four.	Generalisation	

Holy Trinity

For every one groups of 6 there are two groups of 3	Structure	
Products in the six times table are also in the three times table. The product of an even number and three is a prodcut in the six times table.	Generalisation / structure.	
Six is double three, so \qquad sixes are double \qquad threes. Three is half of six, so \qquad threes are half of \qquad sixes.	Structure.	Six is double three, so six sixes are double six threes. Three is half of six, so 5 threes is half of 5 eights. $\begin{aligned} & 6 \times 3=18 \\ & 6 \times 6=36 \quad \text { (double 18). } \end{aligned}$
For every one group of nine, there are three groups of three.	Generalisation / structure.	
Nine is tripple three so \qquad nines is tripple \qquad threes.	Structure.	000000000 000000000 000000000 000000 Nine is tripple three so 2 nines is tripple 2 threes.
Six is half of twelve so __ sixes is half of \qquad twelves. Twelve is double six so \qquad twelves is double \qquad sixes.	Structure	Six is half of twelve so five sixes is half of five twelves. Twelve is double six so five twelves is double five sixes

Stem Sentences
Multiplication \& Division
Holy Trinity

Doubling and Halving.

2 groups of \qquad is equal to \qquad $\times 2$	Structure	There are two boxes. Each box contains four cakes. 2 groups of 4 is equal 4×2
If there are two equal groups we can use the two times table	Generalisation	
There are two groups of \qquad There are \qquad , two times This is the same as double \qquad	Structure	There are two groups of 5 There are are five, two times This is the same as double 5 .
If we need to double/find twice the amount, we can use facts from the two times table.	Generalisation	
Doubling a whole number always gives an even number.	Generalisation	
Double __ = double__ + double _	Structure	Partition to double Double $15=$ double $10+$ double 5 $=20+10$ $=30$
When one of the factors is two, the product is double the other factor.	Generalisation	

Half of ___ Half of __ + half of	Language/ structure	Partitioning to half Half of $\mathrm{I} 2=$ half of $10+$ half of 2 $\begin{aligned} & =5+1 \\ & =6 \end{aligned}$
When one of the factors is 2 , the other factor is half of the product.	Generalisation	
I know that double ____ is ___; so half of \qquad is \qquad	Language / structure.	Link between doubling and halving I know that double four is equal to eight; so half of eight is equal to four.
Division as grouping.		
___ divided into groups of ___	Structure/ language	Quotitive division 'There are fifteen biscuits. IfI put them into bags of five, how many bags will I need?' 15 divided into groups of 5 .
There are \qquad groups of \qquad ; there are \qquad altogether. \qquad is divided into groups of \qquad There are \qquad groups. \qquad is divided into \qquad groups of \qquad	Structure	There are three groups of two; there are six altogether. Six divided into groups of two. There are three groups Six is divided into three groups of two
\qquad is divided into groups of \qquad with a remainder of \qquad	Structure	Division with a reminader $\begin{aligned} & 14=5+5+4 \\ & 14=2 \times 5+4 \end{aligned}$ Fourteen is divided into two groups of five with a remainder of four.
\qquad is divided into groups of \qquad There are \qquad groups.	Structure	There are eight socks. If I put them into pairs, how many pairs will there be? Eight is divided into groups of 2. There are four groups There are four groups of two in eight.

Holy Trinity

The \qquad represents the total number of seeds The \qquad represents the number of seeds in each group/pot	Structure	There are fourteen seeds. Two seeds are planted in each pot How may pots are needed? Fourteen divided into groups of two The 14 represents the total number of seeds The 2 represents the number of seeds in each group/pot.
Dividend \div divisor $=$ quotient.	Generalisation / language	30 \div 5 $=$ 6 dividend \div divisor $=$ quotient
\square is the dividend is the divisor \qquad is the quotient.	Language	I buy ten loaves of bread. I can fit five loaves into each bag. How many bags do I need? $10 \div 5=2$ The dividend is ten. It represnts how many loaves I have altogether. The divisor is five. It represents the number in each bag. The quotient is 2 . It represtns how many bags I will need.
Division as sharing		
divided between	Language / structure	'Ihave twenty conkers and I। Partitive division share theme equally between five chidder. How many conkers does each child get?' 20 divided between 5
\qquad are shared equally between \qquad Each child gets \qquad	Language / structure	I have twenty conkers and I share them equally between five children. How many conkers does each child have? Twenty conkers are shared equally between five children. Each child gets four conkers.

Holy Trinity

$\ldots _$divided between___ is equal	Structure	There are twenty-four bean bags. If they are shared qually to each. between two teams, how many bean bags does each team get?
	Shenty four divided between two is equal to twelve each.	

Holy Trinity

We can write this as \qquad times \qquad is equal to \qquad Both factors are the same, so we can also write this as \qquad squared is equal to \qquad	Structure	There are seven netball teams, each with seven players. We can write this as 7 times 7 is equal to 49 . $7 \times 7=49$ Both facotrs are the same, so we can also write this as 7 squared is equal to $497^{2}=49$ $7^{2}=49$
When both factors have the same value, the product is called a square number. Square numbers can be represented by square shaped arrays.	Generalisation	

Division with remainders.

\qquad is divided into groups of \qquad There are \qquad groups with a remainder of \qquad	Structure	14 is divided into groups of 5 . There are 2 groups of 5 with a remainder of 4 . $\begin{aligned} & 14=5+5+4 \\ & 14=2 \times 5+4 \end{aligned}$ The ' 14 ' represents the total number of counters The ' 2×5 ' represents 2 groups of 5 The ' 4 ' represents the remaining counters.
\qquad divided into equal gropus of \qquad is equal to \qquad , with a remainder of \qquad -.	Structure	A baker has fourteen cakes. He sells cakes in boxes of four. How can he box the cakes? Fourteen divided into equal groups of four is equal to three, with a remainder of two. So, the baker can make three boxes of cakes with two let over.
Dividend \div divisor $=$ quotient r remainder	Generalisation	$14 \div 4$ $=3$

Holy Trinity

\qquad divided between \qquad is equal to \qquad each with a remainder of \qquad .	Language / structure.	Partitive division Nineteen divided between three is equal to six each with a remainder of one.
The largest multiple of \qquad that is less than or equal to \qquad is \qquad .	Language / structure.	$\begin{aligned} & 0 \times 5=0 \\ & 1 \times 5=5 \\ & 2 \times 5=10 \\ & \mathbf{3 \times 5}=\mathbf{1 5} \\ & 4 \times 5=20 \end{aligned}$ The largest multiple of five that is less then or equal to nineteen if fifteen.
The remainder is always less than the divisor.	Generalisation	
\qquad is a multiple of \qquad , so when it is divided into gropus of \qquad there are none left over: there is no remainder.	Structure	I 2 is a multiple of 4 , so when it is divided into gropus of 4 there are none left over: there is no remainder.
\qquad is not multiple of \qquad , so when it is divided into gropus of \qquad there are some left over: there is a remainder.	Structure	17 is not multiple of 5 , so when it is divided into gropus of 5 there are some left over: there is a remainder.

If the dividend is a multiple of the divisor there is no remainder. If the dividend is not a multiple of the divisor. Thre is a reaminader.	Language / Generalisation			
Connecting multiplication and division.				
The product in the multiplication equation has the same value as the dividend in the mathcing division equation.	Structure / language/ generalisation.	$\begin{aligned} & a \times b=c \\ & c \div a=b \end{aligned}$		
The factors in the multipication equation have the same values as the divisor and the quotient in the matching division equation.	Structure / language/ generalisation.	$\begin{aligned} & a \times b=\mathbf{c} \\ & c \div a=b \end{aligned}$		
Distributive law				
\qquad is equal to \qquad plus \qquad so \qquad times \qquad is equal to \qquad times \qquad plus \qquad times \qquad	Structure		$\begin{aligned} \mathbf{5} & =\mathbf{4}+\mathbf{1} \\ \mathbf{5} \times 8 & =\mathbf{4} \times 8+\mathbf{1} \times 8 \\ & =32+8 \\ & =40 \end{aligned}$ Five is equal to four plus one so five times eight is equal to four times eight plus one times eight.'	$\begin{aligned} \mathbf{4} & =\mathbf{5 - 1} \\ \mathbf{4} \times 8 & =\mathbf{5} \times 8-\mathbf{1} \times 8 \\ & =40-8 \\ & =32 \end{aligned}$ 'Four is equal to five minus one so four times eight is equal to five times eight minus one times eight.'

Partition \qquad x \qquad into \qquad x and \qquad \qquad . \qquad \qquad -		Derrive multiplication facts beyond known times tables. Partition 7×13 into 7×10 and 7×3 $\begin{aligned} 7 \times 13 & =7 \times 10+7 \times 3 \\ & =70+21 \\ & =91 \end{aligned}$
	Structure	Working flexibly 6×18 can be partitioned into 6×10 add 6×8 Or 6×20 subtract 6×2.
Multiplying and dividing by 10, 100 or 1,000		
For every one pencil of Emily's Jamie has ten. \qquad multiplied by ten is equal to \qquad \qquad is ten times the size of \qquad		Emily has three pencils; Jamie has ten times as many. How many pencils does Jamie have? For every one pencil of Emily's Jamie has ten. Think of 3 and make it ten times the size. Think of 3 and multiply by ten. 3 multiplied by ten is equal to 30 30 is ten times the size of 3 30 pencils is ten times as many as 3 pencils. Jamie has 30 pencils.

To find ten times as many, multiply by ten. All multiples of ten have a ones digit of zero.	Generalisation	
We had \qquad ones. We now have \qquad tens.	Structure / language	
To multiply a whole number by ten, place a zero after the final digit of that number.	Generalisation	It is important to use the phrase 'place a zero' rather than 'add a zero.' The placed zero is a place value holder.

Holy Trinity

\qquad is ten times as many as \qquad Emily has \qquad pencils	Structure.	Jamie has 30 pencils; he has ten times as many as Emily. How many pencils does Emily have? 30 is tens times as many as 3 Emily has 3 pencils
To find the inverse of ten times as many, divide by ten. To divide a multiple of ten by ten, remove the zero from the ones place.	Generalisation	
\qquad multipled by one hundred is equal to \qquad \qquad is one hundred times the size of \qquad		I have I5, This is one ten and five ones. How much is one hundred times this amount? I5 multipled by one hundred is equal to 1500 I500 is one hundred times the size of 15
All multiples of 100 have both a tens and ones digit of zero.	Generalisation	
To multiply a whole number by a hundred, place two zeros after the final digit of that number.	Generalisation	It is important to use the phrase 'place a zero' rather than 'add a zero.' The placed zero is a place value holder.
\qquad divided by one hunderd is equal to \qquad	Structure	200 divided by one hunderd is eqaul to 2 $200 \div 100=2$
Multiplying by one hundred is equivalent to multiplying by ten, and then multiply by ten again.	Generalisation	
Dividing by one hundred is equivalent to dividing by ten, and then divide by ten again.	Generalisation	

| If one factor is made ten times
 the size, the product will be ten
 times the size. | Generalisation | 3 | \times | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If one factor is made one hundred times the size, the product will be one hundred times the size.	Generalisation	$\begin{aligned} & 2 \times 3=6 \\ & \times 100 \\ & 2 \times 300=600 \end{aligned}$	
If the dividend is made one hundred times the size, the quotient will be one hundred times the size.	Generalisation		
To multiply multiples of ten, one hundred or one thousand, remove the zeros, find the product of the single digits numbers then replace the zeros.	Generalisation		
Short multiplication			
Partition \qquad into \qquad and \qquad Multiply the ones \qquad x \qquad Multiple the tens \qquad x \qquad	Structure	Informal written method: 34×2 $=30 \times 2+4 \times 2$ $=60+8$ $=68$ Expanded multiplicatio algorithm: Partition 34 into 30 and 4 Multiply the ones \qquad x \qquad Multiple the tens \qquad x \qquad	
\qquad hundreds x \qquad $=$ \qquad hundreds \qquad tens x \qquad $=$ \qquad tens \qquad ones x \qquad $=$ \qquad ones	Language / structure.	$\begin{aligned} & 5 \text { hundreds } \times 3=15 \text { hundreds } \\ & 2 \text { tens } \times 3=6 \text { tens } \\ & 1 \text { one } \times 3=3 \text { ones } \\ & \begin{aligned} 521 \times 3 & =500 \times 3+20 \times 3+1 \times 3 \\ & =1500+60+1 \end{aligned} \end{aligned}$	
Partition \qquad into \qquad and \qquad \qquad \qquad ones $=$ \qquad ones Write the \qquad in the ones column (and \qquad in the tens column) \qquad \qquad tens $=$ \qquad tens Write the \qquad in the tens column (and \qquad in the hundreds column)	Structure	Example 1-compact layout with place-value headings: 1005 105 15 3 2 4 1 2 8 - 4×2 ones $=8$ ones Write "8" in the ones column.' - 4×3 tens $=12$ tens $=1$ hundred +2 tens Write " 1 " in the hundreds column and "2" in the tens column.'	Example 2-compact layout without place-value headings: \qquad $\begin{aligned} & \\ & \times \\ & \hline 105 \\ & \hline \end{aligned}$ - 5×1 one $=5$ ones Write "5" in the ones column.' - 5×2 tens $=10$ tens; 10 tens $=1$ hundred and 0 tens Write " 1 " in the hundreds column and " 0 " in the tens column.'

\qquad tens divided by \qquad is equal to \qquad tens each. \qquad ones divided by \qquad is equal to \qquad one each. \qquad tens and \qquad ones make \qquad each	Structure	 Eight tens divided by four is equal to two tens each. Four ones divided by four is equal to one one each. \qquad tens and \qquad ones make \qquad each
If dividing the tens gives a remaider of one or more tens, we must exchange the remaing tens for ones.	Generalisation	
\qquad tens are one ten each. That's \qquad tens are two tens each. That's \qquad . There are \qquad tens left over. Exchange the remaining tens for ones. \qquad tens and \qquad one is equal to \qquad ones. \qquad ones divided between \qquad is equal to \qquad ones each. \qquad tens and \qquad ones makes Each child gets \qquad marbles.	Language / structure	Three tens are one ten each. That's thirty. Six tens are two tens each. That's sixty. There are two tens left over. Exchange the remaining tens for ones: Two tens and one one is equal to twenty one ones. Twenty one ones divided between three is equal to seven ones each. Add the partial quotients 2 tens and 7 ones makes 27 . Each child gets twenty-seven marbles.
\qquad tens and \qquad ones divided between \qquad is equal to \qquad tens and \qquad one. Each child gets \qquad		$21 \div 4$ Eight tens and four ones divided between four is equal to two tens and one one. Each child gets twenty-ones sticks.
$473=$ \qquad hundreds + \qquad tens + \qquad ones. \qquad hundred(s) hundred tens $=$ tens ens \div tens nes $=$ nes = ones r ones \div r_	Language and structure.	```473 = 4 hundreds + 7 tens + 3 ones. 4 hundreds \div 3 = I hundred r I hundred. I hundred + 7 tens = 17 tens 17 tens \div 3 = 5 tens r 2 tens 2 tens + 3 ones =23 ones 23 ones }\div3=\mathbf{7}\mathrm{ ones r }\mathbf{2}\mathrm{ ones So 473\div3=157r2```

If dividing the hundreds gives a remainder of one or more hundred, we must exchaneg the remaining hundreds for tens.	Generalisation	
Scaling		
The \qquad is \qquad times the length of the \qquad .	Structure / language	The plain ribbon is three times the length of the spotty ribbon. $5 \mathrm{~cm} \times 3=15 \mathrm{~cm}$ The 5 cm represents the length of one spotty ribbon The 3 represents the number of spotty ribbons that are equal to the length of the plain ribbon. The 15 cm represents the length of three spotty ribbins. It also represents the length of the plain ribbon.
If two objects are the same length, one object is one times the length of the other.	Generalisation	
\qquad multiplied by \qquad is equal to \qquad is \qquad times the size of \qquad		12 multiplied by 10 is equal to 120 120 is 10 times the size of 12
\qquad divided by \qquad is equal to \qquad \qquad \qquad times the size of \qquad		'A pencil was twenty centimetres long when it was new. It is now one-quarter times its original size. How long is the pencil now? $\begin{aligned} & 20 \mathrm{~cm} \times \frac{1}{4}=5 \mathrm{~cm} \\ & 20 \mathrm{~cm} \div 4=5 \mathrm{~cm} \end{aligned}$ - The pencil is now five centimetres long.' 5 cm is $1 / 4$ times the size of 20 cm
The___ is __ times the mass of		The mass of the mother bear is four times the mass of her cub. $25 \mathrm{~kg} \times 4=100 \mathrm{~kg}$ The mass of the mother bear is one hundred kilograms. The mass of the cub is one quarter times the mass of his mother. $\begin{aligned} & 100 \mathrm{~kg} \times 1 / 4=25 \mathrm{~kg} \\ & 100 \div 4=25 \mathrm{~kg} \end{aligned}$

Equivalence		
If I double one factor, I must halve the other factor for the product to stay the same.	Generalisation	
If I multiply \qquad by two, I must divide \qquad by two for the product to stay the same.	Structure	
If I multiply one factor by two , I must divide the other factor by two for the product to stay the same.	Generalisation	
If I multiply one factor by \qquad I must divide the other factor by \qquad for the product to stay the same.	Generalisation	
If I multiply the dividend by \qquad , I must multiply the divisor by \qquad for the quotient to stay the same.	Language / structure.	
If I divide the dividend by \qquad must divide the divisor by \qquad for the quotient to stay the same.	Language / structure.	'If I divide the dividend by five I must divide the divisor by five for the quotient to stay the same.

Holy Trinity

When a number is multiplied by a value greater then one, the

 product is greater then the original number.When a number is multiplied by a value less than one, the product is less than the original number.

Generalisation

 is one-tenth the size of ___ so\qquad divided by \qquad is one tenth the size of \qquad divided by \qquad
\qquad is one-hundredth the size of
\qquad so \qquad divided by \qquad is one hundredth the size of \qquad divided by

Stem Sentences
Multiplication \& Division
Holy Trinity

If the dividend is made onetenth times the size, the quotient will be one-tenth times the size.	Generalisation	
If the dividend is made onehundredth times the size, the quotient will be onehundredth times the size.	Generalisation	56 ones $\div 8=7$ ones so 56 hundredths $\div 8=7$ hundredths
I move the digits of the dividend \qquad places to the left until I get a whole number; then I divide; then I move the digits of the quotient \qquad places to the right.	Generalisation	
\qquad ones \div \qquad \qquad ones So \qquad tenths \div \qquad $=$ \qquad tenths.	Structure	
If there is a decimal point in the dividend, put a decimal point in the quotient; line it up with the decimal point in the dividend.	Generalisation	Step 1 - write the divisor, dividend and frame: $6 \longdiv { 2 . 4 6 }$ Step 2 - write the decimal point for the quotient: $6 \longdiv { 2 . 4 6 }$ Step 3 - perform the calculation, with unitising: $\begin{array}{r} 0 \cdot 4 \quad 1 \\ 6 \longdiv { 2 \cdot { } ^ { 2 } 4 \quad 6 } \end{array}$

Volume			
You can measure volume in cubic centimetres. You write this as $\mathbf{c m}^{3}$	Generalisation		
This shape has a volume of___ cm^{3}	Language		

This layer has \qquad rows of cubes There are \qquad $1 \mathrm{~cm}^{3}$ cubes in this layer. This layer has a volume of \qquad cm^{3}. The volume of the cuboid is \qquad cm^{3}.	Structure	
The volume of a cuboid can be found by multiplying the length by the width by the height.	Generalisation	
Length X width X height \qquad cm X \qquad cm X \qquad $\mathrm{cm}=$ \qquad cm^{3}	Structure	Length X width X height. $4 \mathrm{~cm} \times 3 \mathrm{~cm} \times 6 \mathrm{~cm}=42 \mathrm{~cm}^{3}$
The ___ refers to the ___	Structure	'If we stack up two trays, how many teacups will there be in total?' 'One tray has three columns and four rows. There are two trays. We can write this as $3 \times 4 \times 2$.' - The " 3 " refers to the number of columns.' - The "4" refers to the number of rows.' "The " 2 " refers to the number of trays.' $3 \times 4 \times 2=12 \times 2$ $=24$
If you change the order of the factors, the product remains the same.	Generalisation	
Factors, multiples, prime numbers and composite numbers.		
There are \qquad tiles. There are \qquad rows and \qquad columns, So \qquad and \qquad are factors of \qquad .	Language / structure.	There are 12 tiles. There are 4 rows and 3 columns, So 4 and 3 are factors of 12
I is a factor of all positive integers. Every positive integer is a factor of itself. The smallest factor of a positive integer is always 1 . The largest factor of a positive integer is always itself.	Generalisation	

\qquad is a factor of \qquad because is in the \qquad times table.	Structure language	"' 7 " is a factor of " 42 " because " 42 " is in the " " 7 " times table.' $' 42 \div 7=6$ sol can make a rectangular array that is 6×7.' '" 6 " and " 7 " are factors of " 42 ".'

Stem Sentences
Multiplication \& Division

Numbers that have more than two factors are composite numbers.	Generalisation		
Numbers that have exactly two factors are prime numbers.	Generalisation		
The common factors of \qquad and \qquad are \qquad	Language / structure	Common factors The common factors of " 12 " and " 20 " are " 1 ", " 2 " and " 4 ".'	
\qquad and \qquad are prime factors of \qquad		Prime Factors 2 and 3 are prime fctors of 12 .	
Combining calculations			
When there are no brackets, multiplication is completed before addition and subtraction.	Generalisation		
When there are no brackets, division is completed before addition and subtraction.	Generalisation		
$\mathbf{a} \times \mathbf{c}-\mathbf{c \times c}=(\mathbf{a - b}) \times \mathbf{c}$	Structure / generalisation	There are six boxes of jumpers in th with ten jumpers in each box. Iwf?' sold. How many jumpers are left? $10 \times 6-10 \times 2=$ $10 \times(6-2)=$ $10 \times 4=40$	ore
When two dividends are divided by the same divisor, we can add the dividends first then divide.	Generalisation	$\begin{aligned} & 16 \div 4+12 \div 4 \\ = & (16+12) \div 4 \\ = & 28 \div 4 \\ = & 7 \end{aligned}$ 'Each child gets seven	sweets.'
When two dividends are divided by the same divisor, we can subtract the dividends first then divide.	Generalisation	$\begin{aligned} & 15 \div 3-9 \div 3 \\ = & (15-9) \div 3 \\ = & 6 \div 3 \\ = & 2 \end{aligned}$ - Kish has two more box	xes than Jess.'
Long multiplication			
To multiply by a multiple of 10 , use short multiplication by a single digit number then multiply by $\mathbf{1 0}$.	Generalisation		Ling's method:

Stem Sentences
Multiplication \& Division

To multiply two two digt numbers, first multiply by the ones, then miultiply by the tens, and then add them together.	Generalisation	
Multiply by the units. Add the place value holder to show it is ten times the size. Multiply by the tens. Add the partial products.	Generalisation	$\begin{array}{r} 3 \\ 312 \\ \times 288 \\ \hline 2496 \\ 6240 \\ \hline 873 \\ \hline 1 \end{array}$
When multiplying, you can write a compositve number as factor x factor and use the associative law to make the calculation more efficient.	Generalisation	$\begin{aligned} 23 \times 14 & =23 \times 2 \times 7 & & 23 \times 14 & =23 \times 7 \times 2 \\ & =46 \times 7 & & & =161 \times 2 \\ & =322 & \text { To } & & =322 \end{aligned}$
Division - 2-digit divisors		
If I divide the dividend by ten, I must divide the divisor by ten for the quotient to stay the same.	Generalisation	Scalingthe dividend and divisor
There are roughly \qquad ' in \qquad .	Structure	Two-digit \div two-d $295 \div 32=$?
Partition __ into __ and ___	Structure	
\qquad hundreds divided by \qquad equal to \qquad hundreds with a ${ }^{\text {i }}$ remainder of Exhange the reminader: \qquad hundreds is equal to \qquad tens.	Structure	

\qquad tens divided by \qquad is equal to \qquad tens with a remainder of \qquad Exhange the reminader: \qquad tens is equal to \qquad ones.			
	Structure	$\begin{array}{rrrl} 0 & 1 & 4 \\ 31 & 4 & 3 & \\ 3 & 1 & 4 & \\ \frac{3}{1} & 2 & 4 & \text { (1ten } \times 31=31 \text { tens) } \\ 1 & 2 & 4 \\ \hline & 0 & \text { (4 ones } \times 31=124 \text { ones) } \end{array}$	Long division
Compensation to calculate.			
If I double one factor, I must double the product.	Generalisation		
If I multiply one factor by \qquad must multiply the product by \qquad	Structure/ language	If I multiply one factor by 3 , I must multiply the product by 3 .	
If I divide one factor by \qquad , I must divide the product by \qquad .	Structure/ language	If I divide one factor by $5, I$ must divide the product by 5 .	
If I multiply the dividend by \qquad and keep the divisor the same, I must multiply the quotient by \qquad .	Structure/ language	If I multiply the dividend by 4 and keep the divisor the same, I must multiply the quotient by 4 .	
If I double the divisor and keep the dividend the same, I must halve the quotient.	Generalisation	$\begin{aligned} & 24 \div(4)=(6) \\ & \text { \|double } \text { \|nalf }^{\text {d }}\end{aligned}$	

Stem Sentences
Multiplication \& Division
Holy Trinity

If I multiply the divisor by \qquad and keep the dividend the same, I must divide the quotient by \qquad .	Structure.	'A rope is 80 m long. It is cut to one-half the size. Another rope is 80 m long. It is cut to one-eighth the size.' 'IfI multiply the divisor by four and keep the dividend the same, I must divide the quotient by four.'
If I divide the divisor by \qquad and keep the dividend the same, I must multiply the quotient by \qquad .	Structure.	'Thirty-six cherries are put into punnets of twelve. Then thirty-six cherries are put into punnets offour.' $\begin{aligned} & 36 \div(12=3 \\ & 36 \div 4=3 \end{aligned}$ - 'f I divide the divisor by three and keep the dividend the same, Imust multiply the quotient by three.'

Mean Average				
The mean is the size of each part when a quantity is shared equally.	Generalisation			
The mean is the total of the				
numbers divided by how many				
numbers there are.				

Holy Trinity

If the scale factor is greater than one, the shape is made larger. We can say the shape is enlarged. If the scale factor is equal to one, the shape is the same size. If the scale factor is less than one, the shape is made smaller. We can say the shape has been reduced.	Generalisation	
The ratio of the dimensions of shape \qquad to the dimensions of shape \qquad is equal to \qquad to \qquad	Structure/ language	A - To change shape A into shape C, scale the sidelengths by a scale factor ofthree.' - The ratio of the dimensions of shape A to the dimensions of shape C is equal to one-to-three.' - 'We can write this as!' dimensions of A : dimensions of $\mathrm{C}=1: 3$

To change shape \qquad into shape \qquad , scale the dimensions by a scale factor of \qquad The ratio of dimensions of shape \qquad to the dimensions of shape \qquad is equal to \qquad to \qquad	Structure / language.	To change shape A into shape B, scale the dimensions by a scale factor of 3 The ratio of dimensions of shape A to the dimensions of shape B is equal to I to 3
Area and Perimeter		
Perimeter is equal to two times \qquad plus two times \qquad	Language / structure.	
The perimeter of a rectangle is equal to two times the length of the long side plus two times the length of the short side.	Generalisation	
Perimeter of the square is \qquad $+$ \qquad $+$ \qquad \qquad Or Perimeter of the square is $4 x$ \qquad	Structure	$\begin{aligned} P & =12 \mathrm{~m}+12 \mathrm{~m}+12 \mathrm{~m}+12 \mathrm{~m} \\ & =12 \mathrm{~m} \times 4 \\ & =48 \mathrm{~m} \end{aligned}$
The perimeter of a square is four times the length of one of the sides.	Generalisation	

Perimeter of the equilateral triangle is_+_+_+_	Structure	
Or		

Stem Sentences
Multiplication \& Division

Perimeter of the regular hexagon is \qquad $+$ \qquad $+$ \qquad $+$ \qquad \qquad $+$ \qquad Or Perimeter of the regular hexagon is 6 \times		
To find the perimeter of a regular polygon, you miltiply the length one of the sides by the number of sides.	Generalisation	
If you know the perimeter of a regular polygon you divide it by the number of sides to find the length of one of its sides.	Generalisation	
This shape has an area of \qquad square units.		This shape has an area of 8 square units.
We can measure area in square centimetres. We write this as cm^{2}	Generalisation	
The ___ represents the ___	Structure	
To find the area of a rectangle multiply the length by the width.	Generalisation	$4 \times 3=12 \mathrm{~cm}^{2}$
A parallelogram can be made into a rectangle that has the same area.	Generalisation	
The base is \qquad The perpendicular height is \qquad The area is \qquad	Structure/ language	
To find the area of a parallelogram multiply the base by the perpendicular height.	Generalisation	

Stem Sentences
Multiplication \& Division

| Two right-angled triangles that |
| :--- | :--- | :--- |
| are the same can be joied to |
| make a rectangle. |
| A rectangle can be divided into |
| two right-angled triangles. |

