Holy Trinity Maths Progression Map 2022-23
Driven by the White Rose Maths SOW

NC objectives	EYFS	Year I	Year 2	Year 3	Year 4	Year 5	
RtP Criteria							
ELG							
							Year 6
Counting	Verbally count beyond 20, recognising the pattern of the counting system	-count to and across 100 , forwards and backwards, beginning with 0 or I, or from any given number - count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	-count in steps of 2,5 and 10 from 0 , and in tens from any number, forward and backward	-count from 0 in multiples of $3,4,8,50$ and 100 ; find 10 or 100 more or less than a given number	Count in multiples of 6, 7, 9, 25 and 1000 Find 1000 more or less than a given number Count backwards through zero to include negative numbers	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 -interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	-use negative numbers in context, and calculate intervals across zero
Place Value	Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; - compare numbers using vocabulary: 'more than', 'less than', 'fewer', 'the same as', 'equal to' - understand the "one more than/one less than' relationship between consecutive numbers	INPV-I Count within I00, forwards and backwards, starting with any number. INPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and	2NPV-1 - recognise the place value of each digit in a two-digit number, and compose and decompose two-digit numbers using standard and non-standard partitioning 2NPV--partitioning. 2NPV-1 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 -compare and order numbers from 0 up to 100 ; use <, > and = signs	-compare and order numbers up to 1000 3NPV-I Know that 10 tens are equivalent to I hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10s there are in other three-digit multiples of 10 3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning. 3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning. 3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.	-order and compare numbers beyond 1000 -round any number to the nearest 10,100 or 1000 or 1000 4NPV-I Know that 10 hundreds are equivalent to I thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s 100 are in other four-digit multiples of 100 4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using 4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each. 4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	-read, write, order and compare numbers of each digit -round any number up to I 000000 to the nearest $10,100,1000,10000$ and 100 000 5NPV-I Know that 10 tenths are equivalent to I one, and that I is 10 times the size of 0.1 . Know that 100 hundredth are equivalent to I one, and that I is 100 hundredths are equivalent to I tenth, and that 0.1 is 10 times the size of 0.01 5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning. 5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of I and $0 . I$ and rounding to the nearest of each. 5NPV-4 Divide I into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of I with 2, 4, 5 and 10 equal parts. 5NPV-5 Convert between units of measure, including using common decimals and fractions	-read, write, order and compare numbers of each digit - round any whole number to a required degree of accuracy 6NPV-I Understand the relationship between powers of 10 from 1 hundredth number $10,100,1,000,1$ tenth, 1 hundredth or I thousandth times the size (multiply and divide by 10,100 and $\mathrm{I}, 000$). 6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning. 6NPV-3 Reason about the location of any number up to 10 million, including decima fractions, in the linear number system, and round numbers, as appropriate, including in contexts. 6NPV-4 Divide powers of IO, from I hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number 4,5 and labelled intervals divided into 2 , 4,5 and 10 equal parts.
Representing number	Subitise (recognise quantities without counting) up to 5; - link the number symbol (numeral) with its cardinal number value, up to 10	-identify and represent numbers using objects and pictorial representations including the number line, \& use language of: equal to, more than, less than (fewer), most, least read and write numbers from I to 20 in numerals and words •read, write and interpret mathematical statements involving addition $(+)$, subtraction (-) and equals (=) signs	-identify, represent and estimate numbers using different representations, including the number line -read and write numbers to at least 100 in numerals and in words	-identify, represent and estimate numbers using different representations -read and write numbers up to 1000 in numerals and in words	-identify, represent and estimate numbers using different representations -read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	-read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals -recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed $\left({ }^{3}\right)$	
Representations	Peg boards Numicon Rekenreks Counters Unifix blocks Part-whole mode	Part-whole models Tens frame Dienes Bead strings Rekenreks Cuisenaire rods Peg boards Numicon Rekenreks Counters Unifix block Unifix blocks	Part-whole models Bar model Tens frame Number lines Dienes Bead strings Rekenreks Cuisenaire rods Tables and graphs	Part-whole models Bar model Tens frame Number lines Dienes Bead strings Place value counters Place value charts Column,,$+- x$ and \div Gattegno charts Cuisenaire rods Rekenreks Tables and graphs	Part-whole models Bar model Tens frame Number lines Dienes Bead strings Place value counters Place value charts Column,,$+- x$ and \div Gattegno charts Cuisenaire rods Rekenreks Tables and graphs	Part-whole models Bar model Tens frame Number lines Dienes Bead strings Place value counters Place value charts Column,,$+- x$ and \div Gattegno charts Cuisenaire rods Rekenreks Tables and graphs	Part-whole models Bar model Tens frame Number lines Dienes Bead strings Place value counters Place value charts Column,,$+- x$ and - Gattegno charts Cuisenaire rods Rekenreks Tables and graphs

Holy Trinity Maths Progression Map 2022-23

Driven by the White Rose Maths SOW

$\square \longrightarrow$							
NC objectives							
RtP Criteria							
ELG							
Number facts (+/-)	Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally. Have a deep understanding of number to 10 , including the composition of each number; Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts	-given a number, identify one more and one less -represent and use number bonds and related subtraction facts within 20 INF-I Develop fluency in addition and subtraction facts within 10 INF-2 Count forwards and backwards in multiples of 2,5 and 10 , up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.	-use place value and number facts to solve problems recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 2NF-I Secure fluency in addition and subtraction facts within 10 , through continued practice.	3NF-I Secure fluency in addition and subtraction facts that bridge 10 , through continued practice 3NF-2 Recall multiplication facts, and corresponding division facts, in the 10,5 , 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number. 3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).			
Mental +/-		-add and subtract one-digit and two-digit numbers to 20 , including zero IAS-I Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	-add and subtract numbers using concrete objects, pictorial representations, and mentally, including: $T U+U, T U+T, T U+T U$ and $\mathrm{U}+\mathrm{U}+\mathrm{U}$ -show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot 2AS-I Add and subtract across 10 2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?",	\cdot add and subtract numbers mentally, including: $\mathrm{HTU}+\mathrm{U}, \mathrm{HTU}+\mathrm{T}$ and $\mathrm{HTU}+\mathrm{H}$ 3AS-1 Calculate complements to 100	-add and subtract numbers mentally, including: $\mathrm{ThHTU}+\mathrm{U}, \mathrm{ThHTU}+\mathrm{T}$, ThHTU+H and ThHTU + Th	-add and subtract numbers mentally with increasingly large numbers	-perform mental calculations, including with mixed operations and large number
Written +/-		IAS-2 Read, write and interpret equations containing addition $(+)$, subtraction $(-)$ expressions and equations to real-life contexts	2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. 2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers.	3AS-2 Add and subtract up to three-digit numbers using numbers using columnar methods. 3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the and use the commertive. Unerty addition, and understand the related property for subtraction.	-add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	\cdot add and subtract whole numbers with more than 4 digits, including using formal written methods	
Problems +/-	- solve real world mathematical problems with numbers up to 10	-solve one-step problems that involv addicon and subtraction, using concrete - bjects and pictorial representations, and missing number problems such as $7=\square$ -9.	-solve problems with addition and subtraction, using concrete, pictorial and abstract representations -recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	-estimate the answer to a calculation and use inverse operations to check answers -solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	-estimate and use inverse operations to check answers to a calculation -solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	-use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy -solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	
Number facts (x / \div)	- explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally		-recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	-recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	4NF-I Recall multiplication and division facts up to 12×12 and recognise products in multiplication tables as multiples of the corresponding number. 4NF-2 Solve division problems, with two digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context. 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)	-identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers \bullet know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers -establish whether a number up to 100 is prime and recall prime numbers up to 19 $5 \mathrm{NF}-\mathrm{I}$ Secure fluency in multiplication table facts, and corresponding division facts, through continued practice. 5NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by I tenth or hundredth).	-identify common factors, common multiples and prime numbers
Mental (x/ \div)			-calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	-write and calculate mathematica statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using menta methods	-use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and I ; dividing by I ; multiplying together three numbers	-multiply and divide numbers mentally drawing upon known facts ${ }^{\circ}$ multiply and divide whole numbers and those involving decimals by 10,100 and 1000	-perform mental calculations, including with mixed operations and large numbers

Holy Trinity Maths Progression Map 2022-23
Driven by the White Rose Maths SOW

Holy Trinity Maths Progression Map 2022-23
Driven by the White Rose Maths SOW

Holy Trinity Maths Progression Map 2022-23
Driven by the White Rose Maths SOW

Holy Trinity Maths Progression Map 2022-23
Driven by the White Rose Maths SOW

Mathematics glossary for teachers (Key stage I-3)
Provided by the National Centre for Excellence in the Teaching of Mathematics
NationalCurriculumGlossary.pdf

